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Abstract

Objective—The main objective of this pilot study was to gather preliminary information about 

how telomere length (TL) varies in relation to exposure to polycyclic aromatic hydrocarbons 

(PAHs) in children living in a highly polluted city.

Methods—We conducted a cross-sectional study of children living in Fresno, California (n=14). 

Subjects with and without asthma were selected based on their annual average PAH level in the 

12-months prior to their blood draw. We measured relative telomere length from peripheral blood 

mononuclear cells (PBMC).

Results—We found an inverse linear relationship between average PAH level and telomere 

length (TL) (R2 = 0.69), as well as between age and TL (R2 = 0.21). Asthmatics had shorter mean 

telomere length than non-asthmatics (TLasthmatic=1.13, TLnon-asthmatic=1.29).

Conclusions—These preliminary findings suggest that exposure to ambient PAH may play a 

role in telomere shortening.
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Introduction

In many urban settings, ambient air pollution is a major public health concern because of the 

associated burden of disease. According to the World Health Organization, outdoor air 

pollution is responsible for about 3.7 million deaths annually on a global basis (1). In the 

United States, exposure to traffic-related PM2.5 (particulate diameter ≤2.5 μm) may 

contribute to as much as 20% of total mortality (2). Air pollutants also appear to play an 

important role in the onset of many chronic diseases including asthma, lung cancer, ischemic 

heart disease and stroke (3–6). A number of epidemiological studies have demonstrated that 

exposures to particulate matter and ozone were associated with increases in 

cardiopulmonary mortality (7,8). Despite this mounting evidence, the exact underlying 

mechanisms by which air pollutants cause adverse cardiopulmonary health outcomes are not 

clear.

Animal studies have suggested several biological mechanisms to explain how air pollution 

induces disease outcomes (9). One possible mechanism is that the free radicals generated 

during the incomplete combustion of fossil-fuel products cause oxidative stress within the 

respiratory and cardiovascular systems (10). Oxidative stress occurs when free radicals 

exceed the relative amount of antioxidants. Reactive oxygen species (ROS), a common class 

of free radical, are generated with inhalation of certain air pollutants. Evidence from a 

number of epidemiological studies indicates that air pollution causes oxidative stress, which 

is capable of damaging lipids, proteins, and DNA (10–12). Since telomeres play a critical 

role in chromosome stability and cell viability, it is reasonable to use telomere length as a 

biomarker for air pollution induced cytotoxicity.

Recent studies of telomere length and exposure to high levels of traffic-related air pollutants 

in healthy adults have found shortening of telomeres associated with increasing air pollution 

levels (13,14). Telomeres are multiple short sequences of DNA located at the end of linear 

eukaryotic chromosomes (5′AGGGTT2′) (15). Maintenance of telomere length is important 

for cell viability because cells with short telomeres lose their ability to divide and become 

senescent or undergo apoptosis (16). In addition, telomeres protect chromosomes against 

inappropriate recombination and fusion with other broken chromosomes, which can 

potentially lead to malfunction, cancer, or cell death (15,16). Since the guanine base is more 

prone to be oxidized than other DNA bases, the high guanine content of the telomere 

sequence makes telomeric DNA vulnerable to oxidative stress (17,18).

Children may be especially vulnerable to the effects of telomeric DNA damage due to their 

physical development as well as developing immune system. One study has shown different 

telomere attrition rates among newborns, their parents, and grandparents (19). This suggests 

that children may have different telomere regulation than adults and thus may be 

differentially susceptible to effects of air pollution

As the first step towards a better understanding of the long-term health effects of traffic-

related air pollution on telomere length, we conducted a pilot study to gather information 

about how telomere length varies in relation to air pollution, age, sex, and asthma status. In 

this study, we focus on polycyclic aromatic hydrocarbons (PAHs). PAHs are a class of 
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chemical compounds characterized by fused benzene rings (20). PAHs are produced during 

incomplete combustion of organic matter. They exist in ambient air in both gas and particle 

phases (adsorbed to particulate matter). In many urban environments, motor vehicle exhaust 

is the main source of high-molecular-weight PAHs (four to six rings), which are more 

carcinogenic and mutagenic than low-molecular-weight PAHs (two- and three-rings) (21). 

Ambient concentrations of PAHs in the United States range from 0.02–1.2 ng/m3 in rural 

areas, and 0.15–57.1 ng/m3 in urban environments (22–25). PAHs are ubiquitous ambient air 

pollutants in Fresno and can be transformed into quinones in the atmosphere (25–27). 

Quinones can serve as catalysts in redox cycling and generate free radicals (26,27).

Methods

All methods and procedures were approved by the institutional review boards of Stanford 

University and the University of California, Berkeley.

Study subjects

Subjects were selected from a larger population of children enrolled in an ongoing study of 

asthma in Fresno, CA (Figure 1). They were age 11 to 18 years old, living in Fresno, 

California. Fresno is located in the center of the San Joaquin Valley, which is part of the 

Central Valley in California. Fresno is the second-most polluted city in the United States, in 

terms of 24-hour average PM2.5 (28) and has a high prevalence of asthma (29). For the pilot 

study, 14 subjects were selected from high- and low-exposure groups, as defined by annual 

average 24-hour outdoor residential exposure to PAHs in the 12 months prior to their blood 

draw (2009–2012). The high-exposure group was defined as above the 80th percentile of 

PAH exposures and the low-exposure group below the 10th percentile. An equal number of 

subjects (n=7) were selected from the high- and low-exposure groups.

Study participants came from two related studies, the initial Fresno Asthmatic Children’s 

Environment Study (FACES), and the subsequent Children’s Health and Air Pollution Study 

(CHAPS). FACES was a longitudinal cohort study designed to follow children with asthma. 

CHAPS focused on the health risks of air pollution exposure in both asthmatic and non-

asthmatic children in the San Joaquin Valley. Of the 14 subjects in the pilot, 5 were 

asthmatic, originally recruited for FACES, and 9 non-asthmatic subjects were recruited for 

CHAPS. At the baseline interview, all subjects provided detailed information on their 

general history and respiratory health. FACES study participants had asthma and underwent 

pre- and post-bronchodilator spirometry and skin prick testing for 14 aeroallergens common 

in the Fresno area. CHAPS subjects were defined as non-asthmatic and non-allergic if they 

had (1) no reported physician diagnosis of asthma, (2) normal pulmonary function test 

results, (3) total IgE (immunoglobulin E) <10IU/mL, and (4) negative skin test results. 

Further details on the study design and cohort characteristics can be found in papers 

published elsewhere (30–33).

Individual PAH exposure estimates

To estimate the daily individual exposures to ambient PAHs, we developed a land use-

regression model using PAH measurements from both a central monitoring site and outdoor 
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residential samples from a subset of FACES participants’ homes. .The filter-based PAH 

samples provided concentrations for 14 PAHs. However, we chose to use the sum of the 

mass concentrations of PAHs with 4-, 5- or 6-rings in this analysis as a metric representing 

the less volatile, particle-bound PAHs. This selected group of PAHs (PAH456) had a good 

correlation with the continuous measure of PAHs we were using in the spatial-temporal 

model. Outdoor, residential 24-hour PAH456 concentrations were used as the dependent 

variable in a mixed-effects regression model with a large number of independent land use 

and meteorological variables. Good agreement between predicted and measured 

concentrations of PAH456 was reported with the final model. The model parameters were 

used to calculate individual daily exposure to outdoor residential PAH456. More information 

on the model selection/parameters and field sampling of PAH456 can be found in Noth et 

al., 2011 (27).

Telomere length measurement

Total genomic DNA was purified from peripheral blood mononuclear cells (PBMCs) using 

QIAamp® DNA Mini kit (QIAGEN, Cat#51104). The telomere length assay was adapted 

from the published original method by Cawthon (34,35). Telomere length was determined 

by relative ratio of telomere gene copy number to single copy gene copy number in each 

sample to reference DNA sample. The telomere thermal cycling profile consisted of:

Cycling for T(telomic) PCR: denature at 96°C for 1 second, anneal/extend at 54°C for 60 

seconds, with fluorescence data collection, 30 cycles. Cycling for S (single copy gene) PCR: 

denature at 95°C for 15 seconds, anneal at 58°C for 1 second, extend at 72°C for 20 seconds, 

8 cycles; followed by denature at 96°C for 1 second, anneal at 58°C for 1 second, extend at 

72°C for 20 seconds, hold at 83°C for 5 seconds with data collection, 35 cycles.

The primers for the telomere PCR were tel1b [5′-CGGTTT(GTTTGG)5GTT-3′], used at a 

final concentration of 100 nM, and tel2b [5′-GGCTTG(CCTTAC)5CCT-3′], used at a final 

concentration of 900 nM. The primers for the single-copy gene (human beta-globin) PCR 

were hbg1 [5′ GCTTCTGACACAACTGTGTTCACTAGC-3′], used at a final 

concentration of 300 nM, and hbg2 [5′-CACCAACTTCATCCACGTTCACC-3′], used at a 

final concentration of 700 nM. The final reaction mix contained 20 mM Tris-HCl, pH 8.4; 

50 mM KCl; 200 μM each dNTP; 1% DMSO; 0.4× Syber Green I; 22 ng E. coli DNA per 

reaction; 0.4 Units of Platinum Taq DNA polymerase (Invitrogen Inc.) per 11 microliter 

reaction; 0.5 – 10 ng of genomic DNA. Tubes containing 26, 8.75, 2.9, 0.97, 0.324 and 

0.108ng of a reference DNA (from Hela cancer cells) were included in each PCR run so that 

the quantity of targeted templates in each research sample can be determined relative to the 

reference DNA sample by the standard curve method. The same reference DNA was used 

for all PCR runs.

To control for inter-assay variability, eight control DNA samples were included in each run. 

In each batch, the the ratio of telomere to single copy gene (T/S) of each control DNA was 

divided by the average T/S for the same DNA from 10 runs to get a normalizing factor. This 

was done for all eight samples and the average normalizing factor for these samples was 

used to correct the participant DNA samples to get the final T/S ratio. The T/S ratio for each 

sample was measured twice. When the duplicate T/S value and the initial value varied by 
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more than 7%, the sample was run a third time and the two closest values were reported. The 

coefficient of variation (CV) for this study was typically 2.5%.

Statistical analysis

Linear regression was used to estimate the association between PAH456 and TL, adjusting 

for age, sex, race/ethnicity (Latino and White) and asthma status. In a sensitivity analysis, 

the oldest subject with the lowest TL was excluded.

Results

Table 1 displays the summary characteristics of study subjects. The mean age, telomere 

length and PAH456 exposure are presented by sex, race/ethnicity and asthma status in Table 

2. On average, TL was shorter in the higher PAH456 group; the difference in relative 

telomere length between the lowest and highest PAH456-exposed individual participants 

was 0.36.

Crude regression models for TL on age (Figure 2) and PAH456 (Figure 3) suggest inverse 

linear relationships for both. In a multivariable regression model, telomere length (TL) 

decreased by −0.14 units (95%CI: −0.25,−0.11) per one ng/m3 increase in PAH456, 

adjusting for age, sex, race/ethnicity and asthma (Table 3). Altogether the covariates 

explained 83% of the variance in TL. Female participants had slightly longer mean 

telomeres than males (TLfemale=1.25, TLmale=1.21). Asthmatic participants had shorter 

mean telomere length than non-asthmatic participants (TLasthmatic=1.13, 

TLnonasthmatic=1.29). The shortest telomere length (TL= 0.96) was found in the subject with 

the highest PAH456 exposure (4.2 ng/m3). This subject was a 17 year-old Caucasian male 

asthmatic participant and his TL was between 1 and 2 standard deviations below the mean. 

After excluding this participant in sensitivity analysis, the association with PAH456 

remained significant and the model R2 decreased to 72%.

Asthmatic participants were exposed to higher levels of PAH456 than non-asthmatic 

participants (Figure 4). There were more male asthmatic participants in our sample than 

females and male participants were exposed to a wider range of PAH456 levels (Figure 5).

Discussion

To the best of our knowledge, this is the first study to investigate the relationships between 

traffic-related air pollution, specifically ambient PAHs, and telomere length in children in 

the United States. We found that telomere length decreased with increasing PAH exposure 

among the small group of participants in this pilot study, consistent with the hypothesis that 

PAH exposure may cause oxidative stress that can accelerate telomere shortening. The fit of 

a linear model for TL and exposure to ambient PAH456 improved when adjusted for age, 

sex, race/ethnicity and asthma status. Therefore, our results also suggest that age, sex, and 

asthma status may influence the length of telomeres in children.

Lee et al. Page 5

J Occup Environ Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Air Pollution and Telomere Length

The relationship between PAH exposure and telomere length we observed in this study of 

adolescents is consistent with studies in healthy adults that have shown telomere shortening 

with increasing air pollution levels (13,14,36–38). For example, Hoxha et al. reported mean 

leukocyte telomere length (LTL) among traffic officers in Milan, Italy was 1.10 (95% CI: 

1.04–1.16) compared to a mean LTL in office workers of 1.27 (95% CI: 1.20–1.35) (14). In 

our younger participants, the mean telomere length of the subjects with the lowest PAH 

exposure was 1.38, whereas the telomere length of the participant with the highest PAH 

exposure was 0.96.

Previous studies have reported a dose-response relationship between PAH exposure and 

biomarkers of oxidative stress (39,40). Although preliminary pilot data, our results are 

consistent with the hypothesis that exposure to ambient PAHs (largely generated during 

combustion of diesel and gasoline fuels in Fresno) leads to oxidative stress, which in turn 

causes telomere shortening.

Age and Telomere Length

Multiple studies have reported a trend of decreasing telomere length with increasing age 

(36–38). Most cells, with the exception of some germline and stem cells, lose their 

telomerase activity once they are differentiated into specific tissue or blood cells (36). In 

addition, there is less production of stem cells and other renewing cells with increasing age 

(41). In our participants, we found a weak inverse relationship between age and telomere 

length which could be due to the narrow age range of the subjects, or different telomere 

regulation in children and adolescents than that in newborns or adults. Previous studies have 

shown different telomere lengths and rates of telomere sequence loss with different age 

groups(19,36,37). Newborns had the most rapid loss of telomeres. The changes in telomere 

length in later life are rather gradual with advancing age. The longer telomere lengths in 

newborns reflect a large proportion of immature hematopoietic progenitors that have not 

gone through extensive proliferation relative to adults (36,41).

Sex and Telomere Length

Female participants had slightly longer telomeres than male participants, consistent with 

other studies (42,43). In a meta-analysis of telomere length by sex from 36 cohorts 

(n=36,230), females had longer telomeres than males. Several theories have been proposed 

to explain telomere length difference by sex. One is related to an estrogen-responsive 

element that can stimulate telomerase, an enzyme that synthesizes telomere sequences and 

adds them to the end of chromosomes (43). Another theory is that the properties of estrogen 

can counteract oxidative stress by up-regulating antioxidant enzyme expression (44). 

Another alternative explanation for the sex difference between females and males in this 

pilot study may be that there were more male than female participants with asthma.

Asthma and Telomere Length

Asthma is a chronic inflammatory disease in the airways characterized by recurring 

exacerbations (45). Frequent inflammatory responses and rapid cell proliferation can lead to 

telomere shortening (46,47). Exposure to high levels of air pollution can trigger 
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exacerbations of asthma that could lead to telomere shortening (48–50). Although the annual 

average concentration of ambient PAHs was higher among the asthmatic compared to the 

non-asthmatic participants, it is not possible in this pilot study to make inferences about 

whether the shorter telomeres in asthmatic children were due to their condition or due to 

exposure to high levels of PAH, or both.

Strengths and Limitations

Previous studies have reported shorter telomere length in children in relation to community 

stress, poverty, and social deprivation (51), but as noted above, ours is the first to address air 

pollution. Additional strengths of our study include a novel marker of traffic-related air 

pollution, PAHs, and a novel biomarker of air pollution-related cytotoxicity, telomere length. 

Another is our focus on children for whom relatively scant data are available on the 

association between air pollution and telomere length.

There are several limitations of this pilot study. The primary limitation is the small sample 

size. Another major limitation is that the cross-sectional design limits the ability to make 

temporal inferences about whether telomere length shortening occurred after exposure to air 

pollution.

Conclusions

Our pilot study results suggest that telomere shortening in children may be associated with 

exposure to traffic-related air pollution. Greater knowledge of the impact of air pollution at 

the molecular level is necessary to design effective interventions and policies. Our 

preliminary data will inform the design of a larger study to examine the hypothesis 

generated from these results.
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Figure 1. 
Location of the study area.
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Figure 2. 
Scatter plot for age and telomere length.
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Figure 3. 
Scatter plot for PAH exposure and telomere length.
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Figure 4. 
Scatter plot for telomere length and PAH exposure by asthma status.

Lee et al. Page 14

J Occup Environ Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Scatter plot for telomere length and PAH exposure by gender.
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Table 1

Summary characteristics of Fresno pilot study subjects (n=14)

Variable

Mean SD Range

Age (years) 14.0 2.11 11–18

Telomere length (a.u.) 1.23 0.13 0.96–1.43

PAHs exposure (ng/m3) 2.98 0.58 2.1–4.2

%

Female 50

Asthmatic 36

Latino 36
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Table 2

Mean age, telomere length and PAHs exposure by subgroups

Subgroup n Age (yrs) TL (a.u.) PAHs (ng/m3)

Gender

 Male 7 13.3 1.21 2.88

 Female 7 14.7 1.25 2.97

Ethnicity

 Latino 9 13.8 1.20 3.07

 White 5 14.4 1.28 2.68

Asthma

 Asthmatics 5 14.4 1.13 3.22

 Non-asthmatics 9 13.8 1.29 2.77
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Table 3

Multivariable linear regression to predict telomere length (n=14)

Predictor Coef St.Error t-value Pr(>t)

(Intercept) 1.80 0.15 12.00 <.01

PAH (ng/m3) −0.14 0.04 −3.50 0.01

Age (yr) −0.0086 0.013 −0.66 0.54

Gender (ref group: male) −0.04 0.05 −0.80 0.46

Race/ethnicity (ref group: white) 0.01 0.05 0.20 0.79

Asthma status (ref group: asthmatic) −0.07 0.05 −1.40 0.19

Residual standard error: 0.066 on 8 degrees of freedom

Multiple R-squared: 0.83, Adjusted R-squared: 0.72

F-statistic: 7.849 on 5 and 8 DF, p-value: 0.0059
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